2019 INTERNATIONAL ENGINEERING MECHANICS CONTEST (ASIAN REGION) The Brain-ring Team Contest

Statics

On rod of length l is hung by two threads of the same length. The rod
is made up of two halves of the same size. What angle is between the rod
and the horizon if the rod is in equilibrium and its halves are made of
materials with densities ρ and 2ρ ?

Kinematics

| 11 | The cyclist moves at a velocity of $2 \mathrm{~m} / \mathrm{s}$. Then his movement becomes equally accelerated, and
 he moves 250 m in 20 seconds. Find the final velocity of the cyclist? |
| :--- | :--- | :--- |
| 12 | According to the point motion equations in the coordinate form of $x(t)=5+2 \sin ^{2}(t) \mathrm{m}$,
 $y(t)=2-4 \cos (2 t)$ m, determine the radius of curvature of the point trajectory. |
| 13 | |
| The fan rotates at a velocity corresponding to a frequency of 900 rpm. After turning off the fan | |
| rotates equally slowly and it made 75 turns before the stop. How much time has passed since the fan | |
| was turned off until it was completely stopped? | |

Dynamics

21	Two bodies are thrown vertically upwards with a time interval of 4 seconds with the same initial velocities of $v=30 \mathrm{~m} / \mathrm{s}$. At what time moment after the second body began to move the bodies will be at the same height?	
22	A bullet flying at a velocity of $400 \mathrm{~m} / \mathrm{s}$ hits the earth and penetrates into a depth of 36 cm . What is the velocity of the bullet at a depth of 18 cm ?	
23	A material point of mass $m=10 \mathrm{~kg}$ moves in space under the action of a force $F=5 \bar{i}-6 \bar{j}+7 \bar{k} \mathrm{~N}$. Determine the module of the point acceleration.	
24	Vertical lifting of a mass $m=1000 \mathrm{~kg}$ is carried out by a rope wound on a drum of radius $R=$ 0.25 m , the drum rotates with angular acceleration $\varepsilon=2 t \mathrm{rad} / \mathrm{s}^{2}$. Determine the value of the rope tension force at time $t=5 \mathrm{~s}$.	
25		The system of three bodies moves under the action of force $P=$ 5 mg . In addition, a system of forces acts on the system, creating a moment of resistance $M_{\text {conp }}=m g R$. Given: $m_{1}=m, m_{2}=2 m, m_{3}=m$. Wheels radii: $R_{2}=1.2 r_{2}=R, R_{3}=2 r_{3}=R$. The radii of inertia of rotationally moving bodies are related to radius R: $i=\frac{1}{\sqrt{2}} R$. Determine the acceleration of the load 1 .
26		The point \mathbf{M} with a mass of 0.25 kg began to move in accordance with the law $s(t)=0,05 t^{2} \mathrm{~m}$ along a rough crossbar $\mathbf{E F}$ from point \mathbf{E} to point \mathbf{F}. The crossbar $\mathbf{E F}$ is on the contour $\mathbf{A B C D}$ rotating around the vertical axis $\mathbf{A B}$, and the angular velocity of rotation $\omega(t)=0,6 \pi t \mathrm{rad} / \mathrm{s}$. Determine the value of the point M-crossbar EF coefficient of sliding friction at $t=1 \mathrm{~s}$.
27		The body is located on an inclined plane, forming an angle of 45° with the horizon. The body had the initial velocity of $10 \mathrm{~m} / \mathrm{s}$. A force T equal to half of bodies weight and it is shown in the figure. The coefficient of sliding friction is 0.2 . Determine the time of body movement before a stop.
28	${ }_{B}^{\square}$	The slider \mathbf{M} of mass $m=20 \mathrm{~kg}$ moves along the vertical rod $\mathbf{A B}$ under the action of gravity. The motion of the slide is slowed with a force $Q=80 \mathrm{~N}$, directed at an angle $\alpha=45^{\circ}$ to the rod. The friction coefficient $f=0.3$. Determine the movement of the slider s if the slider velocity increased from 2 to $5 \mathrm{~m} / \mathrm{s}$.
29		Given: $G=100 \mathrm{~N} ; f=0.2 ; \delta=0.42 \mathrm{~cm} ; R=0.2 \mathrm{~m}, \alpha=45^{\circ}$. The roller should be considered as a continuous homogeneous cylinder. Define the maximal force P, corresponding to movement without sliding.
30		In the shown system the masses of all bodies are the same and equal to $2 m$. The bodies $2,3,4$ are solid homogeneous cylinders. The wheel 4 is attached to the moment of resistance M_{c}. The coefficient of body-plane sliding friction is equal to f, the inclination angle of the plane to the horizon is α. Rolling in all cases occurs without slipping. Determine the sum of the work of all forces applied to the system, if the velocity of the load 1 is equal to v, and the radii $R_{3}=2 R_{2}$. At the initial moment the system was at rest.

Note: the acceleration of gravity $\mathrm{g}=9,81 \mathrm{~m} / \mathrm{s}^{2}$; the value $\pi=3,14$.

